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Abstract.
We model the behaviour of a big (Brazil) nut in a medium of smaller nuts with the stochastic

asymmetric simple exclusion dynamics of a polymer–monomer lattice system. The polymer or
‘rod’ can move up or down in an external negative field, occupying N horizontal lattice sites where
the monomers cannot enter. The monomers (at most one per site) or ‘fluid particles’ are moving
symmetrically in the horizontal plane and asymmetrically in the vertical direction, also with a
negative field. For a fixed position of the rod, this lattice fluid is in equilibrium with a vertical
height profile which is reversible for the motion of the monomers. Upon ‘shaking’ (speeding up
the monomers) the motion of the ‘rod’ dynamically decouples from that of the monomers, resulting
in a reversible random walk for the rod around an average height proportional to logN .

1. Introduction

Studying the coupled dynamics of granular matter of different shapes and sizes is of great
interest for a range of phenomena. One example is the size segregation of particles as a result
of vibrations. A typical realization is a can with nuts; upon shaking the larger (often taken to be
Brazil) nuts rise to the top. Because of its wide interest the phenomenon has been considered
and reconsidered and while some of the aspects are well understood not everything has stopped
being surprising. If one asks for an analysis starting at the microscopic level the situation is
not so satisfactory and even simple models have escaped serious mathematical handling (cf
[1, 2] for further references).

In this paper we consider such a microscopic (albeit stochastic) dynamics for the motion
of a large particle or rod in a lattice fluid composed of monomers. The problem of the present
paper is, however, not quite similar to the canonical Brazil nuts scenario as we are interested
in the equilibrium dynamics. In fact, as we will see, on the time scale of the motion of the
rod, the monomers are in equilibrium for a reversible density profile. The rod then finds its
hydrodynamic equilibrium at a vertical height where the density of the fluid is about equal
to its own density. Going beyond equilibrium conditions, e.g. starting from a homogeneous
density for the lattice fluid, gives rise to additional mathematical problems that we will only
touch on at the end of the paper (see section 4, remark 2), and which will be the subject of
future work.

The result of this paper can be classified under the heading of how to obtain a Markovian
reduced dynamics. This problem is of course a very common one in non-equilibrium statistical
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mechanics where one considers a system composed of various types of degrees of freedom.
The dynamics is globally defined in which the various degrees of freedom are coupled. In
some circumstances and under some limit procedures one then expects that some degrees of
freedom of the system effectively decouple, giving rise to an autonomous (in many cases,
Markovian) dynamics for a subset of degrees of freedom. In our case, it is the shaking, the
speeding up of the monomer dynamics in the horizontal direction, that does the job. In this
way, between any two moves of the polymer, the monomer configuration has the time to relax
to its reversible measure and the polymer always sees the fluid in equilibrium.

Our main result is a mathematically rigorous proof of this dynamical decoupling between
the motion of the rod and the monomer fluid when the monomer dynamics are (infinitely)
speeded up (at least) in the horizontal direction (orthogonal to the motion of the polymer).
In that limit of excessive horizontal shaking the reduced dynamics of the polymer becomes
that of a random walker with rates given directly in terms of the equilibrium fluid density.
When N (the length of the polymer) is sufficiently big (depending on the rates for jumping
up or down) the polymer finds its most probable height around its mean position of order
logN with a variance of order one. In the next section we describe the model and the result.
Section 3 is devoted to proofs. The final section contains an open problem and some additional
remarks.

2. Model and results

2.1. Model

2.1.1. Configuration. For convenience we put the system on the square lattice Z
2. A point

i = (x, y) of the lattice has a ‘vertical’ coordinate y and a ‘horizontal’ coordinate x. We also
write i = (i1, i2) if, in the notation of the coordinates, we want to remember the site i.

The system contains a rigid polymer (large particle, rod) whose position at time t is denoted
by Yt . For simplicity we allow the rod to move only vertically. The horizontal coordinate is
fixed (at 0) and Yt takes values in Z (thought of as the ‘vertical’ axis). The same results would
hold if the polymer also jumps horizontally at rate 1. The polymer occupies N ∈ {2, 3, . . .}
lattice sites. If the polymer has position Yt = y, then it occupies the region

AN(y) = {(0, y), (1, y), . . . , (N − 1, y)}.
This region is forbidden for the monomers (fluid particles). The monomer configuration is
denoted by η ∈ {0, 1}Z

2
and we use ηt to denote the random field of monomers at time t . We

have that ηt (i) = 0 if there is no monomer at site i at time t ; ηt (i) = 1 if there is a monomer at
site i at time t . The dynamics will always be subject to the restriction (exclusion) that ηt (i) = 0
for i ∈ AN(Yt ) (the rod acts as an obstacle for the fluid motion). The full configuration space
is denoted by  = {0, 1}Z

2 × Z.

2.1.2. Dynamics. We now define the coupled dynamics for the polymer–monomers system.
All motion is via jumping to vacant sites. There are the horizontal jumps of the monomers
(which we take symmetric and at rate γ1), the vertical jumps of the monomers (asymmetric at
rate γ2) and the vertical jumps of the rod (asymmetric at rate 1). The asymmetry in the vertical
direction models the presence of an external (e.g. gravitational) field acting on fluid matter
and polymer but can, in general, be different for the monomers and the polymer. Increasing
the rates γ1 and γ2 can be used to simulate the greater mobility of the smaller particles upon
shaking. We are most interested in the case where γ2 � 1 and γ1 � 1 (horizontal shaking).
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Figure 1. A polymer between monomers.

Figure 2. Rates of jumping for the monomer and the polymer where γ2 = 1 and γ1 = γ .

Now we give the formal definition of the generators of these motions. Let f be a local
function on  (i.e. a function that depends on the configuration in a finite region of Z

2). The
first part of the generator represents horizontal monomer jumping:

Lh(η, y) = 1
2

∑
〈ij〉:i2=j2

I [〈ij〉 ∩ AN(y) = ∅][f (ηi,j , y) − f (η, y)] (2.1)

where ηi,j (k) = η(i) if k = j = η(j) if k = i and = η(k) otherwise; the summation is over
nearest-neighbour pairs 〈ij〉 with the same vertical coordinate (i2 = j2). The notation I [·] will
always denote the indicator function.

Secondly, the vertical monomer jumping: with p < q,

Lvf (η, y) =
∑
i

{
pη(i)(1 − η(i1, i2 + 1)) I [(i1, i2 + 1) /∈ AN(y)]

×[f (ηi,(i1,i2+1), y) − f (η, y)]

+qη(i)(1 − η(i1, i2 − 1)) I [(i1, i2 − 1) /∈ AN(y)]

×[f (ηi,(i1,i2−1), y) − f (η, y)]
}
. (2.2)

Finally, there is the polymer jumping: with a, b ∈ R
+,

Lpolyf (η, y) = aI [η(i) = 0,∀i ∈ AN(y + 1)][f (η, y + 1) − f (η, y)]

+bI [η(i) = 0,∀i ∈ AN(y − 1)][f (η, y − 1) − f (η, y)]. (2.3)
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We will then choosep/q, a/b < 1 to represent an external field in the vertical direction driving
all particles, big and small, downward. For example, in the case of a gravitational field, we
could have p/q = exp(−mg/kT ), a/b = exp(−Mg/kT ), where m,M denotes the mass of
a monomer, respectively, a polymer.

The formal generator L of the full dynamics consists of three pieces:

L = γ1Lh + γ2Lv + Lpoly (2.4)

where γ1, γ2 > 0 are additional parameters governing the rates of monomer jumping. Note that
Lmono = γ1Lh + γ2Lv works on the configuration of monomers only (for fixed rod position),
while Lpoly works on the polymer configuration (for fixed monomers). The only interaction is
by excluded volume. The generator (2.4) can be rewritten in the form

Lf (η, y) = Lηfη(y) + Lyfy(η) (2.5)

where fη(·) = f (η, ·) and fy(·) = f (·, y).

2.1.3. Initial distribution and extra remarks. At time zero (starting time) we put the polymer at
the origin: Yt=0 = 0. Then we fix a real parameterκ and distribute the monomers independently
with density

ρ(i) = κ(p/q)i2

1 + κ(p/q)i2
(2.6)

varying in the vertical direction (constant in the horizontal direction), conditioned on η(i) =
0,∀i ∈ AN(0).

More precisely, we let νρ denote the product measure on {0, 1}Z
2

with density

νρ(η(i)) = ρ(i) (2.7)

defined by (2.6). This measure is reversible for each monomer generator process without
a polymer, i.e. the generators defined by (2.1) and (2.2) but without the indicator functions
prohibiting jumps. The proof of this fact is a simple computation. The one-dimensional
analogue is well known, see [8].

For any given y ∈ Z, we write

νy
ρ = νρ(·|η(i) = 0,∀i ∈ AN(y)). (2.8)

At time zero, we put the distribution µ0 on  defined by

µ0(dη, y) = δy,0ν
y
ρ (dη) (2.9)

where δy,0 denotes the Kronecker delta function.
From the initial condition described above and the dynamics defined via (2.4) the process

(ηt , Yt ) is generated. The measure at time t � 0 is denoted by µt . Of course this depends on
the choice of parameters p, q, a, b, γ1 and γ2 and we will sometimes make this explicit in the
notation.

A useful way to imagine the process is by associating two exponential clocks (at rate a,
respectively, b) to the polymer: one clock gives rise to the trial times for the polymer to jump up,
the other indicates the trials for the polymer to jump down. If, just before the trial time τ , say for
jumping up, there are no monomers right above the polymer (ητ−(i) = 0,∀i ∈ AN(Yτ− + 1)),
then the jump is performed and at time τ the polymer is at height Yτ = Yτ− + 1, otherwise it
stays where it was. Between the trial times of the polymer, only the monomers move. The
dynamics for the monomers for a fixed position of the polymer (say at y) is generated by

Ly
monof (η) = γ1Ly

h + γ2Ly
v (2.10)
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which can be read off from (2.1) and (2.2). The associated semigroup is denoted by Sy(t).
Now, the important thing where the ‘equilibrium’ in the title of this paper refers to, is that νy

ρ

is a reversible measure for Sy(t). This will be proven as lemma 3.1 in section 3.

2.2. Results

2.2.1. Limiting random walk. In the limit γ1 ↑ +∞ the motion of the rod will decouple from
the monomer dynamics. It will be a random walk. We first introduce this limiting rod motion.

For a, b ∈ R
+ consider the continuous-time random walk on Z with generator

LRWf (y) = a[1 − ρ(y + 1)]N [f (y + 1) − f (y)] + b[1 − ρ(y − 1)]N [f (y − 1) − f (y)]

(2.11)

where the density profile ρ is obtained from (2.6). Note that, in the notation of (2.5),

LRWf (y) =
∫

νy
ρ (dη)Ly

ηf (y). (2.12)

LRW generates a continuous-time random walk YRW
t which we start at YRW

t=0 = 0 and with a
rate for moving one step upward a[1−ρ(y + 1)]N and a rate moving one step downward equal
to b[1 − ρ(y − 1)]N . We fix the initial state to be 0 for the sake of definiteness. Our results
hold for any other initial (deterministic or random) state.

Proposition 2.1. If a/b > (p/q)N , then the random walk with generator (2.11) defined above
has a unique reversible probability measure m on Z, which is given by

m(y) = 1

Z

(a/b)y

(1 + (p/q)y)N
(2.13)

where Z is a normalizing constant. In particular, the random walk is positive recurrent.

Proof. Reversibility of m(y) is immediate, and the condition a/b > (p/q)N guarantees that
m(y) can be normalized (i.e. Z < ∞). Positive recurrence follows immediately from the
existence of a reversible probability measure. �

Note that the condition a/b > (p/q)N in the case of a gravitational field just means
M/N < m, i.e. the density of the polymer is smaller than the density of the monomer fluid. It
is thus very natural that in this case the polymer will drift up and will float at a height where
the fluid density is proportional to 1/N (see (2.20) and [3]).

In order to study some global properties of the limiting random walk, in particular
its behaviour for large N , we replace the discrete distribution m(y) on Z by a continuous
distribution,

m(dx) := exp(−αx)

(1 + exp (−βx))N

1

Z(α, β,N)
dx. (2.14)

Here

Z(α, β,N) =
∫ ∞

−∞
dx

exp(−αx)

(1 + exp(−βx))N
= 1

β

((α/β)((N − α/β)

((N)
(2.15)

and e−α = a/b, e−β = p/q. From (2.15) we can calculate the cumulants of the continuous
distribution m(dx); in particular,∫

x m(dx) = 1

β

(
ψ

(
α

β

)
− ψ

(
N − α

β

))
(2.16)
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where ψ(x) = (′(x)/((x). Using the asymptotic expansion

ψ(z) = log z − 1

2z
− 1

12z2
+ · · · (2.17)

we obtain ∫
x m(dx) = 1

β
logN + O(1) as N → ∞ (2.18)

and all higher-order cumulants are of order one as N tends to infinity. The modus of m (the
position where m(x) reaches its maximum) is

Mo(m) = (− log(p/q))−1 log

(
log(p/q)N

log(a/b)
− 1

)

� 1

β
logN as N → ∞. (2.19)

2.2.2. Main result. Our main result states

Theorem 2.1. Let 0 � p < q < ∞ and a, b ∈ R
+ and consider the joint monomer–polymer

process with generator (2.4). For any finite time interval K , the marginal law of the polymer
motion (Y

γ1
t : t ∈ K) converges, as γ1 → ∞, to the law of the random walk (Y RW

t : t ∈ K)

defined by (2.11).

2.2.3. Discussion. Since for a/b > (p/q)N the limiting motion is an ergodic random walk
in a countable state space, the process starting from any initial distribution will converge to the
(unique) invariant measure. Hence, by (2.18), the polymer will rise from the zero level to a
level at height proportional to 1

β
logN . If it starts in equilibrium, then it will perform a random

walk around this position. This is exactly what we would expect from general hydrodynamics,
see [3]. After all, the fluid density at height 1

β
logN is precisely, cf (2.6),

ρ

(
1

β
logN

)
= κ/N

1 + κ/N
∼ κ

N
(2.20)

confirming Archimedes’ law in this model of granular matter.

3. Proofs

3.1. Outline of proof

In this section we state the main steps of the proof of theorem 2.1. The reader may use this
section as a guideline to the next section. The main idea of the proof is that in the limit
γ1 ↑ ∞ the monomers are moving very quickly in the horizontal direction and thus can reach
equilibrium in the time between two successive jumps of the polymer. Therefore, the rate
at which the polymer jumps, which is a function of the whole monomer configuration, can
be replaced by the expectation of that rate in the equilibrium distribution of the monomer
configuration.

As a first step (lemma 3.1) we identify the reversible equilibrium measure for the monomers
for a fixed position of the polymer. This is (by reversibility) the original reversible measure of
the monomer gas without a polymer, conditioned on having no monomers on the lattice sites
occupied by the fixed polymer.
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In a second step (lemma 3.2, proposition 3.1) we prove that in the limit γ1 ↑ ∞ any time-
dependent expectation of a function f (Yt , ηt ) of both polymer position Yt and monomer gas
configuration ηt can be replaced by the expectation of a new function depending only on the
polymer position, and obtained from f by integrating out the η variables over the equilibrium
measure. The main ingredients in the proof of that statement are:

(a) Discrepancies in the asymmetric exclusion process move as ‘second-class particles’ which
are a kind of random walker. When γ1 ↑ ∞, these ‘random walkers’ diffuse away very
quickly.

(b) The distribution of the monomers at any jumping time of the polymer is absolutely
continuous with respect to the monomer-fixed polymer equilibrium measure.

In the first two steps we obtain convergence of the distribution of the polymer position Y
γ1
t

to the distribution of the random walk Yt . To finish our proof, we still have to prove that the
whole process {Y γ1

t : t � 0} converges to the whole process {Yt : t � 0} (i.e. the distributions
on trajectories converge). This final step is made by first proving that any limiting process is
Markovian and next that there exists a limiting process (tightness).

3.2. Proof of theorem 2.1

We start this section with an easy lemma on reversible Markov processes.

Lemma 3.1. Let {ηt : t � 0} be a Markov process on  with generator L and let µ be a
reversible measure for L. Suppose A ⊂  such that µ(A) > 0 and such that 1A is in the
domain of the generator. Consider the process with generator

LAf = 1AL(1Af ) − (1AL1A)f. (3.1)

That is, LA corresponds to a process with a ‘forbidden region’ Ac (i.e. jumps from A to Ac are
suppressed). Then the measure µA := µ(·|A) is reversible for LA.

Proof. Because the second term in the right-hand side of (3.1) is just multiplication with the
function 1AL(1A), it suffices to show that L̃Af := 1AL(1Af ) defines a symmetric operator on
L2(A,µA). Let f, g be in the domain of L̃A. Since dµA = (1/µ(A))1A dµ, we obtain, using
the symmetry of L in L2(µ),∫

g(L̃Af ) dµA = 1

µ(A)

∫
1AgL̃Af dµ

= 1

µ(A)

∫
L(g1A)1Af dµ

=
∫

L̃Agf dµA. (3.2)

�
Note that reversibility is crucial in the proof of this lemma. Indeed, if µ is only stationary,

we cannot then conclude in general that µA will be stationary for the process with generator
LA. Indeed, one easily computes∫

LAf dµA = 1

µ(A)

∫
(1AL∗1A − 1AL1A)f dµ (3.3)

i.e. µA will be stationary iff 1AL∗1A − 1AL1A = 0 µ-a.s. Since the profile measures are
reversible for the exclusion process of the monomers without polymer, we can apply lemma 3.1
for µ = νρ , Ac = {η ∈ {0, 1}Z

2
:
∑

z∈A(y,N) η(z) �= 0}, i.e. those monomer configurations
which are excluded when the polymer is at vertical position y. This yields:
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Corollary 3.1. For fixed polymer position at y ∈ Z
2 the measure ν

y
ρ is reversible for the

monomer dynamics with semigroup Sy(t).

Lemma 3.2. Fix y ∈ Z
2. Let f be a local function on {0, 1}Z

2
which only depends on the

monomer configuration in the layers at height y + 1 and y − 1. Suppose that

νy
ρ (f ) = 0.

Then, for any t > 0,

lim
γ1↑+∞

‖Sy(t)f ‖L2(ν
y
ρ ) = 0.

Proof. Abbreviate µ := ν
y
ρ and consider the case fy(η) = 1A(η) − µ(A) for a set A in the

space of configurations depending only on a finite number of coordinates in labels y − 1 and
y + 1. The extension to general local f is straightforward. Denote

DA := {x ∈ Z
2 : 1A(η) �= 1A(η

x) for some η} (3.4)

the dependence set of A. By reversibility,∫
(Sy(t)fy)

2 dµ =
∫

(Sy(2t)fy)fy dµ.

= µ(A)
(
E

y

µ(·|A)(1A(η2t )) − E
y
µ(1A(η2t ))

)
. (3.5)

To compute the difference of the expectations in the above expression we realize the processes
with initial configurations η and ζ in the same probability space (coupling).

To construct this coupling we first associate two Poisson clocks to each site of Z with
parameters γ2p and γ2q, respectively, and use them to decide the times of the vertical attempted
jumps. A jump from (i1, i2) to (i1, i2 + 1) is performed at time t if an event of the Poisson
process of rate p occurs at that time, a particle is present at (i1, i2) and no particle is present at
(i1, i2 + 1) at time t−. Similarly, a jump from (i1, i2) to (i1, i2 − 1) is performed at time t if an
event of the Poisson process of rate q occurs at that time, a particle is present at (i1, i2) and no
particle is present at (i1, i2 −1) at time t−. Jumps either to or from sites occupied by the rod are
suppressed. This takes care of the vertical jumps (see Ferrari [6] for details of this construction).
For the horizontal jumps we associate Poisson clocks with rate γ1 to pairs of horizontal nearest-
neighbour sites. When the clock associated with sites (i1, i2) and (i1 + 1, i2) rings, the contents
of those sites are interchanged. Also here, if at least one of the sites is occupied by the rod, the
jump is suppressed. The horizontal motion is also called a stirring process (see Arratia [4] for
details of this construction). More rigorously, let (Nt (i, j) : i = (i1, i2) ∈ Z, j = (i1 + 1, i2)),
(N+

t (i) : i ∈ Z
2) and (N−

t (i) : i ∈ Z
2) three independent families of independent Poisson

processes of rates γ1/2, pγ2 and qγ2, respectively, —the Poisson clocks. Use the notation
dNt(·) = 1 if there is an event of the Poisson process (Nt (·)) at time t , otherwise it is zero.
The motion is defined by

df (ηt ) =
∑

〈ij〉:i2=j2

dNt(i, j) I [〈ij〉 ∩ AN(y) = ∅][f (ηi,j , y) − f (η, y)]

+
∑
i

{
dN+

t (i) η(i) (1 − η(i1, i2 + 1)) I [(i1, i2 + 1) /∈ AN(y)]

×[f (ηi,(i1,i2+1), y) − f (η, y)]

+dN−
t (i) η(i)(1 − η(i1, i2 − 1)) I [(i1, i2 − 1) /∈ AN(y)]

×[f (ηi,(i1,i2−1), y) − f (η, y)]
}
. (3.6)
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Standard arguments, see for instance Durrett [5] show that (3.6) defines a process ηt =
0(η0;N [0, t]), with initial configuration η0, where 0 is the function induced by (3.6) and
N [0, t] := (Ns(·, ·), N+

s (·), N−
s (·) : 0 � s � t); furthermore, it can be immediately seen that

ηt has a generator Ly . Given two initial configurations η and ζ , the coupling of their evolutions
is constructed using the same Poisson processes: define

(ηt , ζt ) := (0(η;N [0, t]),0(ζ ;N [0, t])).

Let E
y

(η,ζ ) denote expectation in the coupling starting with (η, ζ ). We also need to couple
the initial configurations. Let µ̃A be the law of a pair of configurations (η, ζ ) with marginal
distributions µA and µ and such that η(x) = ζ(x) for all x ∈ Z

2 \ DA. It is possible to
construct a measure with these properties because µ is a product measure. We then have

E
y

µ(·|A)(1A(ηt )) − E
y
µ(1A(ηt )) =

∫
µ̃A(d(η, ζ ))E

y

(η,ζ )[1A(ηt ) − 1A(ζt )]. (3.7)

The number of initial discrepancies is finite, that is,
∑

x I (η(x) �= ζ(x)) � |DA| < ∞.
At each site x of Z we have one of three possibilities: (η(x) − ζ(x)) = 0, no discrepancies;
(η(x) − ζ(x))+ > 0, positive discrepancies; or (η(x) − ζ(x))− > 0, negative discrepancies.
Following the evolution of the particles and the discrepancies we note that if a positive
discrepancy jumps over a negative one, then both discrepancies collide, giving place to a
coupled particle and a hole; if a coupled particle attempts to jump to a discrepancy, the jumps
occur and then the discrepancy must jump to the site previously occupied by the coupled
particle. These two behaviours only occur when vertical jumps are involved. In the horizontal
jumps, discrepancies and coupled particles just interchange positions according to the Poisson
horizontal (stirring) clocks.

We say that there is a first-class particles at site i at time t when ξt (i) = ηt (i)ζt (i) = 1, a
positive second-class particles when (ηζ )t (i) = ηt (i)− ζt (i) = 1 and a negative second-class
particles when (ζη)t (i) = ζt (i) − ηt (i) = 1. The first-class particles occupy initially those
sites i occupied by both η and ζ . Locally in time, the motion of the first-class particles is that
given by generator Ly but superposed to it there is a pure birth process of first-class particles:
with rate

p(ηζ )t (i1, i2 − 1)(ζη)t (i1, i2)

the second-class particles at (i1, i2−1) and (i1, i2) annihilate each other and a first-class particle
appears at (i1, i2) and an empty site appears at (i1, i2 − 1). Similarly, at rate

q(ηζ )t (i1, i2 + 1)(ζη)t (i1, i2)

the second-class particles at (i1, i2 +1) and (i1, i2) annihilate each other and a first-class particle
appears at (i1, i2) and an empty site appears at (i1, i2 − 1).

The marginal distribution of a second-class particle between two vertical jumps (or
between a jump and an annihilation) corresponds to the law of a nearest-neighbour symmetric
random walk—with reflection at the rod when at level y—in the horizontal direction. In the
vertical direction the motion is not Markovian—it depends on the configuration of the first- and
second-class particles at the instants of attempted jumps—and either there is an annihilation
as described above or the second-class particles just change horizontal line. For instance, at
time t , jumps of a (ηζ ) second-class particle from site (i1, i2) to site (i1, i2 + 1) occur with rate

p(ηζ )t (i1, i2)(1 − ξt (i1, i2 + 1)) + q(ηζ )t (i1, i2)ξt (i1, i2 + 1)

and similarly for the other cases. The first term corresponds to the jump over an empty site
and the second one to the interchange of positions with a first-class particle.
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This coupling has the property

P
y

(η,ζ )

{∑
x

I (η(x) �= ζ(x)) �
∑
x

I (ηt (x) �= ζt (x))

}
= 1 (3.8)

i.e. the number of discrepancies cannot increase.
Since by construction the discrepancies between η and ζ are all located at DA, we have

the estimate

E
y

(η,ζ )[1A(ηt ) − 1A(ζt )] �
∑
i∈DA

∑
z∈DA

P(Xi(t) = z) (3.9)

where Xi(t) is the position of a second-class particle initially at i. If at site i there were no
discrepancy we use the convention Xi

t �∈ Z
2 (and hence �= z, for all z ∈ DA). If particles i and

j were discrepancies of different sign and collided before time t , we also set Xi
t , X

j
t �∈ Z

2.
The process Xi

t has rate γ1 to move symmetrically in the horizontal direction. If the rod
were not present, we could dominate P(Xi(t) = y) by P((Xi(t))1 = y1), where (Xi(t))1

is the first coordinate of the walk. Since without the rod the first coordinate makes just a
symmetric random walk at rate γ1, that probability would be dominated by γ

−1/2
1 times a

constant. However, with the rod we have to work a bit more. The process Xi(t) has rate at
most γ2(p + q) to move in the vertical direction. This implies that the time elapsed between
the last vertical jump and t is dominated by the minimum between an exponential time of rate
γ2(p + q) and t . With this in hand it is not difficult to prove that also in this case P(Xi(t) = y)

is bounded above by γ
−1/2
1 times a(nother) constant. Here we use that γ2 remains bounded

when γ1 goes to infinity. We conclude that, for any pair i, y in DA,

lim
γ1↑∞

P(Xi(t) = y) = 0. (3.10)

Therefore, we conclude, combining (3.5), (3.7), (3.9) and (3.10) and the fact that DA is a
finite set:

lim
γ1↑∞

∫
dµfy S

y(2t)fy = 0. (3.11)

�

Remark. We postpone until section 4, remark 3, an alternative more general proof of lemma 3.2
which works equally well for a broader class of exclusion dynamics (e.g. with speed change)
provided the projection of the invariant measure on horizontal layers is ergodic for the horizontal
dynamics.

We now prove an intermediate result which is important for the proof of theorem 2.1.

Proposition 3.1. Let fy be a function depending only on the configuration values at the N

sites of AN(y − 1) or AN(y + 1). Then we have for all t > 0:

lim sup
γ1↑∞

E
(γ1,γ2)

ν0
ρ×δ0

(
fYt

(ηt ) −
∫

fYt
(η) νYt

ρ (dη)

)
= 0. (3.12)

Proof. We first want to condition on a sequence T ε := (T
ε1

1 , . . . , T εn
n ) of marked trial jumps

before t . Here εi ∈ {−1,+1} is the mark of the jump: +1 for up, −1 for down. Next we
consider α1, . . . , αn ∈ {0, 1} with interpretation αi = 1 if the ith marked trial jump succeeds,
αi = 0 if not. Given (T

ε1
1 , . . . , T εn

n ) and α := (α1, . . . , αn), we define

Yα
k =

k∑
j=1

εjαj . (3.13)
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This corresponds to the position of the polymer at time T
εk
k , given successful and failed jumps

(α1, . . . , αk). Finally, we denote by V α,ε
p := V α

T ε,αp
(η) the event that the polymer in Yα

p−1 can
(for αp = 1) or cannot (for αp = 0) perform the jump to Yα

p−1 + εp. With this notation, we can
write

E
(γ1,γ2)

ν0
ρ×δ0

(
fYt

(ηt ) −
∫

f (η)νYt

ρ (dη)

∣∣∣∣ T ε1
1 , . . . , T εn

n ; T εn
n < t < T

εn+1
n+1

)

=
∑

α∈{0,1}{1,...,n}
P
(γ1,γ2)

ν0
ρ×δ0

(α)

×
∫

dµ(γ1,γ2)

α,Y α
n

S
Yα
n

(γ1,γ2)
(t − T εn

n )

(
fYα

n
−

∫
fYα

n
(η)ν

Yα
n

ρ (dη)

)
. (3.14)

Here µ
(γ1,γ2)

α,Y α
n

denotes the monomer distribution at time s = (T εn
n )+, given the successes

(α1, . . . , αn), and P
(γ1,γ2)

ν0
ρ×δ0

(α) denotes the probability of the sequence of succeeded and failed

jumps prescribed by α at the times T ε . The crucial thing to realize at this point is that the
probability measure µ

(γ1,γ2)

α,Y α
n

is absolutely continuous with respect to the conditioned Bernoulli

measure ν
Yα
n

ρ . In lemma (3.3) below we shall give a uniform bound on the density

7(γ1,γ2)
α,n :=

dµ(γ1,γ2)

α,Y α
n

dν
Yα
n

ρ

. (3.15)

By dominated convergence, the proof of the proposition is reduced to showing that for any
α ∈ {0, 1}{1,...,n} and any δ > 0

lim
γ1↑∞

∫
dµ(γ1,γ2)

α,Y α
n

S
Yα
n

(γ1,γ2)
(δ)

(
fYα

n
−

∫
f (η)ν

Yα
n

ρ (dη)

)
= 0. (3.16)

The expression inside the limit in the left-hand side of (3.16) is bounded by

‖7(γ1,γ2)
α,n ‖∞

∥∥∥∥SYα
n

(γ1,γ2)
(δ)

(
f −

∫
f (η) ν

Yα
n

ρ (dη)

)∥∥∥∥
L2

(
ν
Yαn
ρ

). (3.17)

Therefore, equation (3.16) is a consequence of lemma 3.2 and the following estimate on the
density 7

(γ1,γ2)
α,n .

Lemma 3.3. Put c(ρ, x) := [ρ(x + 1)∧ ρ(x − 1)∧ (1 − ρ(x))]−N . For any α ∈ {0, 1}N and
for any n ∈ N, we have the estimate

lim sup
γ1↑∞

∥∥7(γ1,γ2)
α,n

∥∥ �
n−1∏
p=0

c(ρ, Y α
p ). (3.18)

Proof. We fix α and proceed by induction in n. First put n = 1. By stationarity of ν0
ρ under

the evolution S0
(γ1,γ2)

, we have

µ
(γ1,γ2)

α1,Y
α1
1

= ν0
ρ[ · |V α

1 ]. (3.19)

First consider α1 = 1, i.e. the jump succeeds. Denote V (x) the event that the set AN(x)

contains no monomers. Then we can write∫
f (η)ν0

ρ[dη|V α1
1 ] =

∫
dν

Y
α1
1

ρ [f I (V (0))]
νρ(V (Y

α1
1 ))

νρ(V (0))
. (3.20)
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Hence, we conclude

7(γ1,γ2)
α1

= I (V (0))
νρ(V (Y

α1
1 ))

νρ(V (0))
. (3.21)

And we can estimate

‖7(γ1,γ2)
α1

‖ � 1

νρ(V (0))
� c(ρ, 0). (3.22)

Next consider α1 = 0, i.e. the jump fails (and thus Yα1
1 = 0). We write∫

f (η)ν0
ρ[dη|V α1

1 ] =
∫

ν
Y

α1
1

ρ (dη)[f I (V α1
1 (η))]

1

ν
Y

α1
1

ρ (V
α1

1 )

. (3.23)

Hence,

7(γ1,γ2)
α1

= I [V α1
1 ]

ν0
ρ(V

α1
1 )

. (3.24)

So also in that case we have the estimate

‖7(γ1,γ2)
α1

‖ � 1

ν0
ρ(V

α1
1 )

� c(ρ, 0). (3.25)

This proves the claim for n = 1. Suppose the claim is true for n = 1, . . . , p − 1. Put αp = 1,
the case αp = 0 can be treated analogously. In order to simplify the notation, we make some
further abbreviations:

(a) µ
(γ1,γ2)

α,Y α
p

:= µp

(b) ν
Y

α1 ,...,αp
p

ρ := ν
p
ρ

(c) 7
(γ1,γ2)
α1,...,αp

:= 7
(γ1,γ2)
p

(d) S
Y

α1 ,...,αp
p

(γ1,γ2)
(t) := S

(γ1,γ2)
p (t)

(e) T
εp
p − T

εp−1

p−1 := τp

(f) V
α1,...,αp

p := Vp.

We compute 7
(γ1,γ2)
p :

µp(f ) = (
µp−1S

(γ1,γ2)

p−1 (τp)
)
[f |Vp]

=
∫

dµp−1 S
(γ1,γ2)

p−1 (τp)(f 1Vp
)∫

dµp−1 S
(γ1,γ2)

p−1 (τp)(1Vp
)

=
∫

dνp−1
ρ

(
S
(γ1,γ2)

p−1 (τp)(7
(γ1,γ2)

p−1 ) f 1Vp

)
∫

dνp−1
ρ

(
S
(γ1,γ2)

p−1 (τp)(7
(γ1,γ2)

p−1 ) 1Vp

)

=
∫

dνp
ρ

(
1Vp−1f S

(γ1,γ2)

p−1 (τp)(7
(γ1,γ2)

p−1 )
)

∫
dνp

ρ

(
1Vp−1S

(γ1,γ2)

p−1 (τp)(7
(γ1,γ2)

p−1 )
) (3.26)
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where in the third step we used reversibility of νp−1
ρ . From (3.26) we read off the density:

7(γ1,γ2)
p = 1Vp−1 S

(γ1,γ2)

p−1 (τp)
(
7

(γ1,γ2)

p−1

)
∫

dνp
ρ

(
1Vp−1 S

(γ1,γ2)

p−1 (τp)7
(γ1,γ2)

p−1

) . (3.27)

We first estimate the nominator of the right-hand side of (3.27):∫
dνp

ρ 1Vp−1 S
(γ1,γ2)

p−1 (τp)
(
7

(γ1,γ2)

p−1

)
=

∫
dνp−1

ρ

(
1Vp

S
(γ1,γ2)

p−1 (τp)
(
7

(γ1,γ2)

p−1

))νρ(Vp−1)

νρ(Vp)

=
∫

dνp−1
ρ

(
S
(γ1,γ2)

p−1 (τp)(1Vp
) 7

(γ1,γ2)

p−1

)νρ(Vp−1)

νρ(Vp)

� νρ(Vp−1) − νρ(Vp−1)

νρ(Vp)

∥∥7(γ1,γ2)

p−1

∥∥
∞

∥∥S(γ1,γ2)

p−1 (τp)
[
1Vp

− νp−1
ρ (Vp)

]∥∥
L2(ν

p−1
ρ )

� 1

c(ρ, Y α
p−1)

− o(γ1) (3.28)

where o(γ1) tends to zero as γ1 ↑ ∞ by lemma 3.2. By the induction hypothesis, we obtain
from (3.27) and (3.28):

lim sup
γ1↑∞

∥∥7(γ1,γ2)
p

∥∥
∞ � lim sup

γ1↑∞

∥∥7(γ1,γ2)

p−1

∥∥
∞c(ρ, Y α

p−1) �
p−1∏
k=0

c(ρ, Y α
k ). (3.29)

This finishes the proof of lemma 3.3 and proposition 3.1. �
As a first application we obtain convergence of the one-point marginals of the processes

{Y (γ1,γ2)
t : t � 0}. For f : Z → R a bounded function, we have, using the notation of (2.5).

E
(γ1,γ2)

ν0
ρ×δ0

(
f (Yt ) − f (Y0) −

∫ t

0
ds (Lηs f )(Ys)

)
= 0. (3.30)

By proposition 3.1 we obtain in the limit γ1 ↑ ∞:

lim
γ1↑∞

E
(γ1,γ2)

ν0
ρ×δ0

(
f (Yt ) − f (Y0) −

∫ t

0
ds

[
(Lη

)
νYs

ρ (dη)]f (Ys)

)

= lim
γ1↑∞

E
(γ1,γ2)

ν0
ρ×δ0

(
f (Yt ) − f (Y0) −

∫ t

0
ds (LRWf )(Ys)

)
= 0. (3.31)

This implies, in particular, that

lim
γ1↑∞

E
(γ1,γ2)

νxρ×δx
f (Yt ) = E

RW
x f (YRW

t ). (3.32)

In order to prove that the processes {Y (γ1,γ2)
t : t � 0} converge weakly in the Skorohod space

of trajectories to the random walk {YRW
t : t � 0}, i.e. the content of theorem 2.1, it suffices to

show that the process {Y (γ1,γ2)
t : t � 0} is asymptotically Markovian. Indeed, then it is uniquely

determined by its single time distributions which are those of the random walk {YRW
t : t � 0}.

More precisely it is sufficient to prove the following lemma.

Lemma 3.4. Let {Ft : t � 0} denote the σ -field generated by {(ηs, Ys) : 0 � s � t}. We have

lim
γ1↑∞

E
(γ1,γ2)

ν0
ρ×δ0

∣∣∣∣E(γ1,γ2)

ν0
ρ×δ0

(f (Yt )|Fs) −
∑
y

pRW
t−s (Ys, y)f (y)

∣∣∣∣ = 0. (3.33)
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Proof. By the Markov property of the process {(ηt , Yt ) : t � 0},
E

(γ1,γ2)

ν0
ρ×δ0

(f (Yt )|Fs) = E
(γ1,γ2)

ηs×δYs
(f (Yt−s))

= f (Ys) + E
(γ1,γ2)

ηs×δYs

∫ t−s

0
Lηr f (Yr) dr. (3.34)

Therefore, it suffices to show that

lim
γ1↑∞

E
(γ1,γ2)

ηs×δYs

(∫ t−s

0
Lηr f (Yr) dr −

∫ t−s

0
dr

∫
Lηf (Yr)ν

Yr

ρ (dη)

)
= 0. (3.35)

Since the trial jumps of the polymer are on the event times of a Poisson process with rate
independent of (γ1, γ2), we can write∫ t−s

0
Lηr f (Yr) dr =

∫ t−s

0

1

ε

∫ r+ε

r

Lηr′f (Yr ′) dr ′ + o(ε) (3.36)

where o(ε) goes to zero in L2(P
(γ1,γ2)

ν0
ρ×δ0

), uniformly in (γ1, γ2), when ε tends to zero. Therefore,

it is sufficient to show that

lim
γ1↑∞

(
E

(γ1,γ2)

ν0
ρ×δ0

E
(γ1,γ2)

ηs×δYs

∣∣∣∣1

ε

∫ ε

0
fYr

(ηr) dr −
∫

νYs

ρ (dη)fYs
(η)

∣∣∣∣
)

= 0. (3.37)

Following the same strategy as in the proof of proposition 3.1, i.e. by estimates on the density of
the monomer distribution with respect to the appropriate conditioned Bernoulli measure, this
reduces to showing that for any ε > 0, for any y ∈ Z and forfy depending on layer y+1 or y−1:

lim
γ1↑∞

E
(γ1,γ2),y

ν
y
ρ

(
1

ε

∫ ε

0
ds fy(ηs) −

∫
νy
ρ (dη)fy(η)

)2

= 0. (3.38)

Putting f̃y := fy − ν
y
ρ (f ), the expression inside the limit in the left-hand side of (3.38) can be

rewritten as∫
νy
ρ (dη)

1

ε2

∫ ε

0
ds

∫ ε

0
drf̃yS

y

(γ1,γ2)
(|r − s|)f̃y

� 1

ε2

∫ ε

0
ds

∫ ε

0
dr ‖f̃y‖L2‖Sy

(γ1,γ2)
(|r − s|)f̃y‖L2 . (3.39)

Hence we obtain (3.38) as an application of lemma 3.2. �

Arriving at this point, we know that any weak-limit point of the processes {Y (γ1,γ2)
t : t � 0}

has the same distribution as the random walk {YRW
t : t � 0}. Hence, to finish the proof of

theorem 2.1, it is sufficient to see that such a weak-limit point actually exists. This is an easy
task.

Lemma 3.5. The sequence of processes {Y (γ1,γ2)
t : t ∈ [0, T ], }(γ1,γ2) is tight.

Proof. Since the number of jumps the polymer makes in [0, T ] is bounded by a mean one-
Poisson process, we have

P

(
sup

0�t�T

|Y (γ1,γ2)
s | � M

)
� 2T

M
(3.40)

and also

lim
δ↓0

P

(
sup

s,t∈[0,T ],|s−t |�δ

|Y (γ1,γ2)
s − Y

(γ1,γ2)
t | > ε

)
= 0. (3.41)

This proves tightness (cf theorem 1.3, p 51 of [7]). �
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4. Additional remarks

Remark 1. What happens when the system is out of equilibrium? For instance, start the
monomers in a homogeneous product measure. When the density is constant and equal to
ρ ∈ [0, 1] (no p, q, i2 dependence in (2.6), the measure ν

y
ρ is no longer invariant for the

monomer dynamics Sy(t) at fixed rod position y. However, in the limit γ1 → ∞ the polymer
will perform a continuous-time random walk with rates a(1 − ρ)N and b(1 − ρ)N for up
and down jumps, respectively. Significant corrections in the case γ1 < ∞ can be expected,
cf [2].

Another problem is obtained if we start the monomers from a sharp density profile; that
is, above the polymer the fluid density is constant ρ1 and under the polymer the density is also
homogeneous and equal to ρ2. In this case the vertical density will follow a discrete space
noiseless Burgers equation: ρ(i, t) ∈ [0, 1], t ∈ R, i ∈ Z

∂ρ(i, t)

∂t
= −pρ(i, t)(1 − ρ(i + 1, t)) − qρ(i, t)(1 − ρ(i − 1, t))

+pρ(i − 1, t)(1 − ρ(i, t)) + qρ(i + 1, t)(1 − ρ(i, t))

with initial condition ρ(i, 0) = ρ2I (i � 0) + ρ1I (i > 0). The limiting motion of the rod will
be a non-homogeneous (in time) Markov process described by

dE (f (Yt ) | Ft )

dt
= a[1 − ρ(Yt + 1, t)]N [f (Yt + 1) − f (Yt )]

+b[1 − ρ(Yt − 1, t)]N [f (Yt − 1) − f (Yt )]

where Ft is the sigma field generated by {Ys : s � t}. These results can be obtained with the
techniques we used to prove theorem 2.1 and will be the content of a future publication.

Remark 2. One may wonder how general the results are. As an illustration of this we
consider the following somewhat abstract modification of lemma 3.2. Suppose that µ is a
reversible measure on {0, 1}Z

2
both for a monomer dynamics with a generator L1 and one

with a generator L2. As an example, we could keep in mind the case where L12 = L1 + L2

is a Kawasaki dynamics (exclusion process with speed change) at finite temperature with L1

generating the horizontal and L2 generating the vertical jumps; µ is the corresponding Gibbs
measure. The measureµ is then also reversible for Lγ

12 = γL1+L2. Now we insert the polymer
and we fix it at some position y ∈ Z. The dynamics of the monomers is now conditioned on
having no monomers in the excluded volume AN(y): ηt (i) = 0,∀i ∈ AN(y),∀t � 0. The
new generator is Ly,γ

12 = γLy

1 + Ly

2 obtained by setting all of the original rates equal to zero for
all updating that would create a monomer in the region AN(y) (the direct analogue of what was
done in (2.1) and (2.2)). It follows then from lemma 3.1 that µy = µ(·|η(i) = 0,∀i ∈ AN(y))

is reversible for Ly

12. We finally denote by µ
y
x the restriction of µy to the layer at height x

(i.e. the set {i ∈ Z
2, i2 = x}). This measure is reversible for Ly

1 . We have the following
result.

Proposition 4.1. Denote by S
γ
y (t) the semigroup with generator Ly,γ

12 . Assume that for all x
µ

y
x is ergodic for Ly

1 . Let fx be a function in L2(µy) with dependence set on layer x �= y. We
have

lim
γ↑∞

∥∥∥∥Sγ
y (t)fx −

∫
dµy

x fx

∥∥∥∥
L2(µy)

= 0. (4.1)
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Proof. By ergodicity Ly

1 has a simple eigenvalue 0 with corresponding eigenspace of constant
functions. Hence by the spectral theorem,( ∫

dµy
x fx

)2

= E
Ly

1
fx,fx

({0}) (4.2)

where E
Ly

1
fx,fx

denotes the spectral measure of the self-adjoint operator Ly

1 . Therefore, we have
to show that if fx is a function on layer x such that

E
Ly

1
fx,fx

({0}) = 0 (4.3)

then

lim
γ↑∞

‖Sγ
y (t)‖L2(µy) = 0. (4.4)

For every ϕ in the domain of Ly,γ

12 ,

lim
γ↑∞

1

γ
(Ly,γ

12 ϕ) = Ly

1ϕ. (4.5)

Hence the spectral measures E
− 1

γ
Ly,γ

12

fx,fx
converges weakly to the spectral measure E

−Ly

1
fx,fx

.
Therefore, we can estimate

‖Sγ
y (t)fx‖2

L2(µy) =
∫ ∞

0
e−γ tλ

E
− 1

γ
Ly,γ

12

fx,fx
(dλ)

�
∫ δ

0
e−γ tλ

E
− 1

γ
Ly,γ

12

fx,fx
(dλ) + e−γ tδ‖fx‖L2(µy)

� E
− 1

γ
Ly,γ

12

fx,fx
([0, δ]) + e−γ tδ‖fx‖L2(µy). (4.6)

Letting γ tend to infinity, and then δ to zero, using (4.3), we obtain (4.4). �

Remark 3. Proposition 4.1 is general but has a strong hypothesis: the ergodicity of the one-
layer horizontal dynamics. This is known only in a few cases, in particular in the symmetric
simple exclusion process we treated in lemma 3.2. It is, however, expected to be true at least
for high-temperature Kawasaki dynamics.
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